

Application Note: Using SENSR Instruments in LabVIEW

SENSR Background

SENSR manufactures innovative systems for capturing dynamic measurements, assessing

performance and managing risk. Our unique blend of advanced technology and core application

experience empowers us to make systems that elevate our customer's abilities.

Our high-value solutions are used to inspect and monitor critical infrastructure, watch over

national treasures, safeguard facilities, prosecute and defend legal cases, break world records,

engineer better products and advance scientific research.

The systems that we design and manufacture reduce the complexity and costs associated with

dynamic monitoring.

You may visit SENSR on the web at http://www.sensr.com.

Overview

The majority of SENSR instrument users make measurements with the software bundled with

each instrument, but SENSR also can provide a device API (application-programming-interface)

for the GP series and the CX series of instruments. These APIs are provided in the form of

Microsoft .Net Assembly DLL (dynamic-link library) files
1
. SENSR also provides source code

for example applications to help users writing custom software for SENSR instruments. This

document and the associated LabVIEW files may assist a user in interfacing a SENSR

A LabVIEW user may find using the DLL files more difficult without an example application.

In order to help LabVIEW users get started quickly, SENSR provides a set of example

LabVIEW VIs (virtual instruments) and sub-VIs. This documentation explains how the example

application was constructed.

1
 The DLL files are .Net assemblies.

Example Application

SENSR provides an example application that uses sub-VIs to read measurements from a SENSR

GP Series instrument. This application is stored in a file called “SENSR LabVIEW stream

example.vi” and requires the DLL files and sub-VIs that are also stored in the “GP Series”

directory. The LabVIEW block diagram for the test application looks like this:

The majority of the interaction with the SENSR DLL files is contained in the sub-VIs. The steps

executed are:

1) The first VI, which is named “connect.vi,” connects to the SENSR device.

2) The second VI, which is named “initialize.vi,” initializes the SENSR device and selects

the G-range to be measured.

3) The third VI, which is named “stream.vi,” gathers streaming data from the SENSR

device. This VI is inside a while-loop structure so it may be called repeatedly to provide

measurements. The front panel indicators for the test application are contained in the

while-loop so the measurements may be updated.

4) The fourth VI, which is named “disconnect.vi,” closes the connection to the SENSR

device.

In general, each step must be both completed and in the above order for device communication

to work properly.

Connecting to the SENSR Device

The connect.vi first uses a constructor node to create a ttr object and then uses an invoke node to

call the Connect method of the ttr object. The output terminals are connected to a reference to

the ttr object and the error out.

Initializing the SENSR Device

The initialize.vi requires a ttr object reference connected to an input terminal and has a terminal

to accept the error in. First, the MonitorDisable method of the ttr object is called. Next, a false

constant is input to the SetAccelSleep method of the ttr object to ensure the accelerometer is not

sleeping. Next, a numeric constant is input to the SetAccelRange method of the ttr object to

select the acceptable limit for acceleration measurement used inside the instrument. Finally, the

AccelPurge method of the ttr object must be called to clear out any readings stored in the

instrument’s buffer. The output terminals are connected to a reference to the ttr object and the

error out.

Retrieving Streaming Data from the SENSR Device

The stream.vi requires a ttr object reference connected to an input terminal and has a terminal to

accept the error in. First, a true constant is input to the SampleStreamingEnable method of the ttr

object. Next, the GetSamples method of the ttr object is called and the ttr object returns a list of

RawDataRecords as defined in the ttr.dll. A case structure and while loop collect each

RawDataRecord in the list and Property nodes break each RawDataRecord down into the data

produced by the instrument. Each property is linked to an output terminal. The error out and ttr

object reference are also linked to output terminals.

Closing the connection to the SENSR Device

The disconnect.vi requires a ttr object reference connected to an input terminal and has a

terminal to accept the error in. First, the disconnect method of the ttr object is called. Next, the

ttr object reference is closed. The output terminal is connected to the error out.

